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In this paper, we introduce the Layer-Peeled Model, a nonconvex,
yet analytically tractable, optimization program, in a quest to
better understand deep neural networks that are trained for
a sufficiently long time. As the name suggests, this model is
derived by isolating the topmost layer from the remainder of
the neural network, followed by imposing certain constraints
separately on the two parts of the network. We demonstrate
that the Layer-Peeled Model, albeit simple, inherits many char-
acteristics of well-trained neural networks, thereby offering an
effective tool for explaining and predicting common empirical
patterns of deep-learning training. First, when working on class-
balanced datasets, we prove that any solution to this model forms
a simplex equiangular tight frame, which, in part, explains the
recently discovered phenomenon of neural collapse [V. Papyan,
X. Y. Han, D. L. Donoho, Proc. Natl. Acad. Sci. U.S.A. 117, 24652–
24663 (2020)]. More importantly, when moving to the imbalanced
case, our analysis of the Layer-Peeled Model reveals a hitherto-
unknown phenomenon that we term Minority Collapse, which
fundamentally limits the performance of deep-learning models on
the minority classes. In addition, we use the Layer-Peeled Model to
gain insights into how to mitigate Minority Collapse. Interestingly,
this phenomenon is first predicted by the Layer-Peeled Model
before being confirmed by our computational experiments.

deep learning | neural collapse | class imbalance

Introduction

In the past decade, deep learning has achieved remarkable
performance across a range of scientific and engineering do-

mains (1–3). Interestingly, these impressive accomplishments
were mostly achieved by heuristics and tricks, though often plau-
sible, without much principled guidance from a theoretical per-
spective. On the flip side, however, this reality suggests the great
potential a theory could have for advancing the development of
deep-learning methodologies in the coming decade.

Unfortunately, it is not easy to develop a theoretical founda-
tion for deep learning. Perhaps the most difficult hurdle lies in
the nonconvexity of the optimization problem for training neural
networks, which, loosely speaking, stems from the interaction
between different layers of neural networks. To be more precise,
consider a neural network for K-class classification (in logits),
which in its simplest form reads*

f (x ;W full) =bL +W Lσ(bL−1

+W L−1σ(· · ·σ(b1 +W 1x ) · · · )).
Here, W full := {W 1,W 2, . . . ,W L} denotes the weights of the
L layers, {b1, b2, . . . , bL} denotes the biases, andσ(·) is a nonlin-
ear activation function such as the rectified linear unit (ReLU).
Owing to the complex and nonlinear interaction between the L
layers, when applying stochastic gradient descent to the optimiza-
tion problem

*The softmax step is implicitly included in the loss function, and we omit other operations
such as max-pooling for simplicity.

min
W full

1

N

K∑
k=1

nk∑
i=1

L(f (x k ,i ;W full), yk ) +
λ

2
‖W full‖2, [1]

with a loss function L for training the neural network, it becomes
very difficult to pinpoint how a given layer influences the output
f (above, {x k ,i}nk

i=1 denotes the training examples in the k-th
class, with label yk , N = n1 + · · ·+ nK is the total number of
training examples, λ > 0 is the weight decay parameter, and
‖ · ‖ throughout the paper is the �2 norm). Worse, this difficulty
in analyzing deep-learning models is compounded by an ever-
growing number of layers.

Therefore, any attempt to develop a tractable and comprehen-
sive theory for demystifying deep learning would presumably first
need to simplify the interaction between a large number of layers.
Following this intuition, in this paper, we introduce the following
optimization program as a surrogate model for Eq. 1 with the goal
of unveiling quantitative patterns of deep neural networks:

min
W L,H

1

N

K∑
k=1

nk∑
i=1

L(W Lhk ,i , yk )

s.t.
1

K

K∑
k=1

‖w k‖2 ≤ EW ,
1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk ,i‖2 ≤ EH , [2]

Significance

The remarkable development of deep learning over the past
decade relies heavily on sophisticated heuristics and tricks.
To better exploit its potential in the coming decade, perhaps
a rigorous framework for reasoning about deep learning is
needed, which, however, is not easy to build due to the
intricate details of neural networks. For near-term purposes,
a practical alternative is to develop a mathematically tractable
surrogate model, yet maintaining many characteristics of neu-
ral networks. This paper proposes a model of this kind that
we term the Layer-Peeled Model. The effectiveness of this
model is evidenced by, among others, its ability to reproduce
a known empirical pattern and to predict a hitherto-unknown
phenomenon when training deep-learning models on imbal-
anced datasets.
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Fig. 1. Illustration of Layer-Peeled Models. B represents the 2-Layer-Peeled Model, which is discussed in Section 6. For each panel, we preserve the details
of the white (top) box, whereas the gray (bottom) box is modeled by a simple decision variable for every training example. (A) The 1-Layer-Peeled Model.
(B) The 2-Layer-Peeled Model.

where W L = [w1, . . . ,wK ]� ∈ R
K×p is, as in Eq. 1, comprised

of K linear classifiers in the last layer,H = [hk ,i : 1≤ k ≤K , 1≤
i ≤ nk ] ∈ R

p×N corresponds to the p-dimensional last-layer
activations/features of all N training examples, and EH and EW

are two positive scalars. Note that the bias terms are omitted for
simplicity. Although still nonconvex, this optimization program
is presumably much more amenable to analysis than the old one,
Eq. 1, as the interaction now is only between two layers.

In relating Eq. 2 to Eq. 1, a first simple observation is that
f (x k ,i ;W full) =W Lσ(W L−1σ(· · ·σ(W 1x k ,i) · · · )) in Eq. 1
is replaced by W Lhk ,i in Eq. 2. Put differently, the black-
box nature of the last-layer features, namely,
σ(W L−1σ(· · ·σ(W 1x k ,i) · · · )) is now modeled by a simple
decision variable hk ,i for each training example, with an
overall constraint on their �2 norm. Intuitively speaking, this
simplification is done by peeling off the topmost layer from the
neural network. Thus, we call the optimization program (1) the
1-Layer-Peeled Model, or simply the Layer-Peeled Model.

At a high level, the Layer-Peeled Model takes a top-down
approach to the analysis of deep neural networks. As illustrated
in Fig. 1, the essence of the modeling strategy is to break down
the neural network from top to bottom, specifically singling out
the topmost layer and modeling all bottom layers collectively as
a single variable. In fact, the top-down perspective that we took
in the development of the Layer-Peeled Model was inspired by a
recent breakthrough made by Papyan, Han, and Donoho (4), who
discovered a mathematically elegant and pervasive phenomenon
termed neural collapse in deep-learning training. This top-down
approach was also taken in refs. (5–9) to investigate various
aspects of deep-learning models.

Two Applications. Despite its plausibility, the ultimate test of the
Layer-Peeled Model lies in its ability to faithfully approximate
deep-learning models through explaining empirical observations
and, better, predicting new phenomena. In what follows, we
provide convincing evidence that the Layer-Peeled Model is up
to this task by presenting two findings. To be concrete, we remark
that the results below are concerned with well-trained deep-
learning models, which correspond to, in rough terms, (near)
optimal solutions of Eq. 1.
Balanced data. Roughly speaking, neural collapse (4) refers to
the emergence of certain geometric patterns of the last-layer

features σ(W L−1σ(· · ·σ(W 1x k ,i) · · · )) and the last-layer clas-
sifiers W L, when the neural network for balanced classification
problems is well-trained in the sense that it is toward not only
zero misclassification error, but also negligible† cross-entropy
loss. Specifically, the authors observed the following properties
in their massive experiments: The last-layer features from the
same class tend to be very close to their class mean; these
K-class means centered at the global mean have the same length
and form the maximally possible equal-sized angles between
any pair; moreover, the last-layer classifiers become dual to the
class means in the sense that they are equal to each other for
each class up to a scaling factor. See a more precise description
in Section B.

While it seems hopeless to rigorously prove neural collapse
for multiple-layer neural networks (Eq. 1) at the moment, alter-
natively, we seek to show that this phenomenon emerges in the
surrogate model (Eq. 2). More precisely, when the size of each
class nk = n for all k, is it true that any global minimizer W �

L =

[w�
1, . . . ,w

�
K ]� ,H � = [h�

k ,i : 1≤ k ≤K , 1≤ i ≤ n] of Eq. 2 ex-
hibits neural collapse? The following result answers this question
in the affirmative:
Finding 1. Neural collapse occurs in the Layer-Peeled Model.

A formal statement of this result and a detailed discussion are
given in Section 3.

This result applies to a family of loss functions L, particularly
including the cross-entropy loss and the contrastive loss (see,
e.g., ref. (10)). As an immediate implication, this result provides
evidence of the Layer-Peeled Model’s ability to characterize well-
trained deep-learning models.
Imbalanced data. While a surrogate model would be satisfac-
tory if it explains some already-observed phenomenon, we set a
higher standard for the model, asking whether it can predict a
new common empirical pattern. Encouragingly, the Layer-Peeled
Model happens to meet this standard. Specifically, we consider
training deep-learning models on imbalanced datasets, where
some classes contain many more training examples than others.
Despite the pervasiveness of imbalanced classification in many

†Strictly speaking, in the presence of an �2 regularization term, which is equivalent to
weight decay, the cross-entropy loss evaluated at any global minimizer of Eq. 1. is
bounded away from 0.
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practical applications (11), the literature remains scarce on its
impact on the trained neural networks from a theoretical stand-
point. Here, we provide mathematical insights into this prob-
lem by using the Layer-Peeled Model. In the following result,
we consider optimal solutions to the Layer-Peeled Model on a
dataset with two different class sizes: The firstKA majority classes
each contain nA training examples (n1 = n2 = · · ·= nKA = nA),
and the remaining KB :=K −KA minority classes each contain
nB examples (nKA+1 = nKA+2 = · · ·= nK = nB ). We call R :=
nA/nB > 1 the imbalance ratio.
Finding 2. In the Layer-Peeled Model, the last-layer classifiers corre-
sponding to the minority classes, namely,w�

KA+1,w
�
KA+2, . . . ,w

�
K ,

collapse to a single vector when R is sufficiently large.
This result is elaborated on in Section 4. The derivation in-

volves some elements to tackle the nonconvexity of the Layer-
Peeled Model (Eq. 2) and the asymmetry due to the imbalance
in class sizes.

In slightly more detail, we identify a phase transition as the
imbalance ratio R increases: When R is below a threshold, the
minority classes are distinguishable in terms of their last-layer
classifiers; when R is above the threshold, they become indis-
tinguishable. While this phenomenon is merely predicted by the
simple Layer-Peeled Model (Eq. 2), it appears in our computa-
tional experiments on deep neural networks. More surprisingly,
our prediction of the phase transition point is in excellent agree-
ment with the experiments, as shown in Fig. 2.

This phenomenon, which we refer to as Minority Collapse,
reveals the fundamental difficulty in using deep learning for clas-
sification when the dataset is widely imbalanced, even in terms of
optimization, not to mention generalization. This is not a priori
evident given that neural networks have a large approximation
capacity (see, e.g., ref. (14)). Importantly, Minority Collapse
emerges at a finite value of the imbalance ratio rather than at
infinity. Moreover, even below the phase transition point of this
ratio, we find that the angles between any pair of the minority
classifiers are already smaller than those of the majority classes,
both theoretically and empirically.

1 10 100 1000 +
Imbalance Ratio (R)

-0.2

0

0.2

0.4

0.6

0.8

1

C
os

in
e wd=5e-3 (LPM)

wd=5e-3 (DL)
wd=5e-4 (LPM)
wd=5e-4 (DL)

Fig. 2. Minority Collapse predicted by the Layer-Peeled Model (LPM; in
dotted lines) and empirically observed in deep learning (DL; in solid lines)
on imbalanced datasets with KA = 7 and KB = 3. The y axis denotes the
average cosine of the angles between any pair of the minority classifier
w�

KA+1, . . . , w�
K for both LPM and DL. The datasets we use are subsets of

the CIFAR10 datasets (12), and the size of the majority classes is fixed to
5,000. The experiments use VGG13 (13) as the deep-learning architecture,
with weight decay (wd) λ = 5 × 10−3, 5 × 10−4. The prediction is especially
accurate in capturing the phase transition point where the cosine becomes 1
or, equivalently, the minority classifiers become parallel to each other. More
details can be found in Section C.

Related Work. There is a venerable line of work attempting to
gain insights into deep learning from a theoretical point of view
(15–29). See also the reviews (30–33) and references therein.

The work of neural collapse by ref. (4) in this body of work
is particularly noticeable with its mathematically elegant and
convincing insights. In brief, ref. (4) observed the following
four properties of the last-layer features and classifiers in deep-
learning training on balanced datasets:‡

(NC1) Variability collapse: The within-class variation of the last-
layer features becomes 0, which means that these features
collapse to their class means.

(NC2) The class means centered at their global mean collapse to
the vertices of a simplex equiangular tight frame (ETF)
up to scaling.

(NC3) Up to scaling, the last-layer classifiers each collapse to the
corresponding class means.

(NC4) The network’s decision collapses to simply choosing the
class with the closest Euclidean distance between its class
mean and the activations of the test example.

Now we give the formal definition of ETF (4, 34).
Definition 1. A K-simplex ETF is a collection of points in R

p

specified by the columns of the matrix

M � =

√
K

K − 1
P

(
IK − 1

K
1K1�K

)
,

where IK ∈ R
K×K is the identity matrix, 1K is the ones vector,

and P ∈ R
p×K (p ≥K )§ is a partial orthogonal matrix such that

P�P = IK .
A common setup of the experiments for validating neural

collapse is the use of the cross-entropy loss with �2 regularization,
which corresponds to weight decay in stochastic gradient descent.
Based on convincing arguments and numerical evidence, ref.
(4) demonstrated that the symmetry and stability of neural col-
lapse improve deep-learning training in terms of generalization,
robustness, and interpretability. Notably, these improvements
occur with the benign overfitting phenomenon (35–39) during the
terminal phase of training—when the trained model interpolates
the in-sample training data.

In passing, we remark that concurrent works (40–43) produced
neural collapse using different surrogate models. In slightly more
detail, refs. (40–42) obtained their models by peeling off the
topmost layer. The difference, however, is that refs. (41) and
(42) considered models that impose a norm constraint for each
class, as opposed to an overall constraint, as employed in the
Layer-Peeled Model. Moreover, ref. (40) analyzed gradient flow
with an unconstrained features model using the squared loss
instead of the cross-entropy loss. The work in ref. (43) provided
an insightful perspective for the analysis of neural networks
using convex duality. Relying on a convex formulation that is in
the same spirit as our semidefinite programming relaxation, the
authors of ref. (43) observed neural collapse in their ReLU-based
model by leveraging strong duality under certain conditions.

Derivation
In this section, we heuristically derive the Layer-Peeled Model
as an analytical surrogate for well-trained neural networks. Al-
though our derivation lacks rigor, the goal is to reduce the
complexity of the optimization problem (Eq. 1) while roughly

‡See the mathematical description of neural collapse in Theorem 1.
§To be complete, we only require p ≥ K − 1. When p = K − 1, we can choose P such

that
[
P� , 1K

]
is an orthogonal matrix.
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preserving its structure. Notably, the penalty λ
2
‖W full‖2 corre-

sponds to weight decay used in training deep-learning models,
which is necessary for preventing this optimization program from
attaining its minimum at infinity when L is the cross-entropy
loss. For simplicity, we omit the biases in the neural network
f (x k ,i ;W full).

Taking a top-down standpoint, our modeling strategy starts by
singling out the weights W L of the topmost layer and rewriting
Eq. 1 as

min
W L,H

1

N

K∑
k=1

nk∑
i=1

L(W Lh(x k ,i ;W−L), yk )

+
λ

2
‖W L‖2 +

λ

2
‖W−L‖2, [3]

where the last-layer feature function h(x k ,i ;W−L) := σ
(W L−1σ(· · ·σ(W 1x k ,i) · · · )) and W−L denotes the weights
from all layers but the last layer. From the Lagrangian dual
viewpoint, a minimum of the optimization program above is
also an optimal solution to

min
W L,W−L

1

N

K∑
k=1

nk∑
i=1

L(W Lh(x k ,i ;W−L), yk )

s.t. ‖W L‖2 ≤ C1, ‖W−L‖2 ≤ C2, [4]

for some positive numbersC1 andC2.¶ To clear up any confusion,
note that due to its nonconvexity, Eq. 3 may admit multiple global
minima, and each in general corresponds to different values of
C1,C2. Next, we can equivalently write Eq. 4 as

min
W L,H

1

N

K∑
k=1

nk∑
i=1

L(W Lhk ,i , yk )

s.t. ‖W L‖2 ≤ C1,

H ∈
{
H (W−L) : ‖W−L‖2 ≤ C2

}
, [5]

where H = [hk ,i : 1≤ k ≤K , 1≤ i ≤ nk ] denotes a decision
variable, and the function H (W−L) is defined as H (W−L) :=
[h(x k ,i ;W−L) : 1≤ k ≤K , 1≤ i ≤ nk ] for any W−L.

To simplify Eq. 5, we make the ansatz that the range of
h(x k ,i ;W−L) under the constraint ‖W−L‖2 ≤ C2 is approx-
imately an ellipse in the sense that

{
H (W−L) : ‖W−L‖2 ≤ C2

}
≈

{
H :

K∑
k=1

1

nk

nk∑
i=1

‖hk ,i‖2 ≤ C ′
2

}
, [6]

for some C ′
2 > 0. Loosely speaking, this ansatz asserts that H

should be regarded as a variable in an �2 space. To shed light on
the rationale behind the ansatz, note that hk ,i intuitively lives in
the dual space of W in view of the appearance of the product
Whk ,i in the objective. Furthermore, W is in an �2 space for
the �2 constraint on it. Last, note that �2 spaces are self-dual.

¶Denoting by (W �
L , W �

−L) an optimal solution to Eq. 3, then we can take C1 = ‖W �
L ‖2

and C2 = ‖W �
−L‖

2.

Inserting this approximation into Eq. 5, we obtain the following
optimization program, which we call the Layer-Peeled Model:

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk ,i , yk )

s.t.
1

K

K∑
k=1

‖w k‖2 ≤ EW ,

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk ,i‖2 ≤ EH . [7]

For simplicity, above and henceforth we write W :=W L ≡
[w1, . . . ,wK ]� for the last-layer classifiers/weights and the
thresholds EW = C1/K and EH = C ′

2/K .
This optimization program is nonconvex but, as we will show

soon, is generally mathematically tractable for analysis. On the
surface, the Layer-Peeled Model has no dependence on the
data {x k ,i}, which, however, is not the correct picture, since the
dependence has been implicitly incorporated into the threshold
EH .

In passing, we remark that neural collapse does not emerge if
the second constraint of Eq. 7 uses the �q norm for any q �= 2
(strictly speaking, �q is not a norm when q < 1), in place of the
�2 norm. This fact in turn justifies in part the ansatz Eq. 6. This
result is formally stated in Proposition 2 in Section 6.

Layer-Peeled Model for Explaining Neural Collapse
In this section, we consider training deep neural networks on
a balanced dataset—that is, nk = n for all classes 1≤ k ≤K .
Our main finding is that the Layer-Peeled Model displays the
neural collapse phenomenon, just as in deep-learning training
(4). The proofs are all deferred to SI Appendix. Throughout this
section, we assume p ≥K − 1 unless otherwise specified. This
assumption is satisfied in many popular network architectures,
where p is usually tens or hundreds of times of K.

Cross-Entropy Loss. The cross-entropy loss is perhaps the most
popular loss used in training deep-learning models for classifi-
cation tasks. This loss function takes the form

L(z , yk ) =− log

(
exp(z (k))∑K

k′=1 exp(z (k ′))

)
, [8]

where z (k ′) denotes the k ′ -th entry of the logit z . Recall that yk

is the label of the k-th class, and the feature z is set to Whk ,i in
the Layer-Peeled Model (Eq. 7). In contrast to the complex deep
neural networks, which are often considered a black-box, the
Layer-Peeled Model is much easier to deal with. As an exemplary
use case, the following result shows that any minimizer of the
Layer-Peeled Model (Eq. 7) with the cross-entropy loss admits
an almost closed-form expression.
Theorem 1. In the balanced case, any global minimizer W � ≡
[w�

1, . . . ,w
�
K ]� ,H � ≡ [h�

k ,i : 1≤ k ≤K , 1≤ i ≤ n] of Eq. 7
with the cross-entropy loss obeys

h�
k ,i = Cw�

k = C ′m�
k , [9]

for all 1≤ i ≤ n, 1≤ k ≤K , where the constants C =
√

EH /EW ,

C ′ =
√
EH , and the matrix [m�

1, . . . ,m
�
K ] forms a K-simplex ETF

specified in Definition 1.
Remark 2. Note that the minimizers (W �,H �) ’s are equivalent
to each other up to rotation. This is because of the rational
invariance of simplex ETFs (see P in Definition 1).

This theorem demonstrates the highly symmetric geometry of
the last-layer features and weights of the Layer-Peeled Model,
which is precisely the phenomenon of neural collapse. Explicitly,
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Eq. 9 says that all within-class (last-layer) features are the same:
h�

k ,i = h�
k ,i′ for all 1≤ i , i ′ ≤ n; next, it also says that the K-class-

mean features h�
k := h�

k ,i together exhibit a K-simplex ETF up to
scaling, from which we immediately conclude that

cos�(h�
k ,h

�
k′) =− 1

K − 1
, [10]

for any k �= k ′ by Definition 1;‖ in addition, Eq. 9 also displays
the precise duality between the last-layer classifiers and fea-
tures. Taken together, these facts indicate that the minimizer
(W �,H �) satisfies exactly (NC1)–(NC3). Last, Property (NC4)
is also satisfied by recognizing that, for any given last-layer fea-
tures h , the predicted class is arg maxk w

�
k ·h , where a · b de-

notes the inner product of the two vectors. Note that the predic-
tion satisfies

arg max
k

w�
k ·h = arg max

k

h�
k ·h = arg min

k

‖h�
k − h‖2.

Conversely, the presence of neural collapse in the Layer-
Peeled Model offers evidence of the effectiveness of our model
as a tool for analyzing neural networks. To be complete, we
remark that other models were very recently proposed to justify
the neural collapse phenomenon (40–42) (see also ref. (44)).

Extensions to Other Loss Functions. In the modern practice of deep
learning, various loss functions are employed to take into account
the problem characteristics. Here, we show that the Layer-Peeled
Model continues to exhibit the phenomenon of neural collapse
for some popular loss functions.
Contrastive loss. Contrastive losses have been extensively used
recently in both supervised and unsupervised deep learning (10,
45–47). These losses pull similar training examples together in
their embedding space while pushing apart dissimilar examples.
Here, we consider the supervised contrastive loss (48), which (in
the balanced case) is defined through the last-layer features by
introducing Lc as

1

n

n∑
j=1

− log

(
exp(hk ,i ·hk ,j/τ)∑K

k′=1

∑n
�=1 exp(hk ,i ·hk′,�/τ)

)
, [11]

where τ > 0 is a parameter. Note that this loss function uses the
label information implicitly. As the loss does not involve the last-
layer classifiers explicitly, the Layer-Peeled Model in this case
takes the form**

min
H

1

N

K∑
k=1

n∑
i=1

Lc(hk ,i , yk )

s.t.
1

K

K∑
k=1

1

n

n∑
i=1

‖hk ,i‖2 ≤ EH . [12]

We show that this Layer-Peeled Model also exhibits neural col-
lapse in its last-layer features, even though the label information
is not explicitly explored in the loss.
Theorem 3. Any global minimizer of Eq. 12 satisfies

h�
k ,i =

√
EHm�

k , [13]

for all 1≤ k ≤K and 1≤ i ≤ n , where [m�
1, . . . ,m

�
K ] forms a K-

simplex ETF.

‖Note that the cosine value − 1
K−1 corresponds to the largest possible angle for any K

points that have an equal �2 norm and equal-sized angles between any pair. As pointed
out in (4), the largest angle implies a large-margin solution (6).

**In Eq. 11, hk,i ≡ h(xk,i , W−L) depends on the data, whereas in Eq. 12, hk,i ’s form
the decision variable H .

Theorem 3 shows that the contrastive loss in the associated
Layer-Peeled Model does a perfect job in pulling together train-
ing examples from the same class. Moreover, as seen from the
denominator in Eq. 11, minimizing this loss would intuitively
render the between-class inner products of last-layer features
as small as possible, thereby pushing the features to form the
vertices of a K-simplex ETF up to scaling.
Softmax-based loss. The cross-entropy loss can be thought of as
a softmax-based loss. To see this, define the softmax transform as

S(z ) =

[
exp(z ((1)))∑K
k=1 exp(z (k))

, . . . ,
exp(z (K ))∑K
k=1 exp(z (k))

]�

,

for z ∈ R
K . Let g1 be any nonincreasing convex function and g2

be any nondecreasing convex function, both defined on (0, 1). We
consider a softmax-based loss function that takes the form

L(z , yk ) = g1 (S(z )(k)) +
K∑

k′=1, k′ �=k

g2
(
S(z )(k ′)

)
. [14]

Here, S(z )(k) denotes the k-th element of S(z ). Taking g1(x ) =
− log x and g2 ≡ 0, we recover the cross-entropy loss. Another
example is to take g1(x ) = (1− x )q and g2(x ) = x q for q > 1,
which can be implemented in most deep-learning libraries, such
as PyTorch (49).

We have the following theorem regarding the softmax-based
loss functions in the balanced case.
Theorem 4. Assume

√
EHEW > K−1

K
log

(
K 2

√
EHEW+

(2K − 1)(K − 1)). For any loss function defined in Eq. 14,
(W �,H �) given by Eq. 9 is a global minimizer of Eq. 7. Moreover,
if g2 is strictly convex and at least one of g1, g2 is strictly monotone,
then any global minimizer must be given by Eq. 9.

In other words, neural collapse continues to emerge with
softmax-based losses under mild regularity conditions. The first
part of this theorem does not preclude the possibility that the
Layer-Peeled Model admits solutions other than Eq. 9. When
applied to the cross-entropy loss, it is worth pointing out that this
theorem is a weak version of Theorem 1, albeit more general.
Regarding the first assumption in Theorem 4, note that EH and
EW would be arbitrarily large if the weight decay λ in Eq. 1
is sufficiently small, thereby meeting the assumption concerning√
EHEW in this theorem.
We remark that Theorem 4 does not require the convexity of

the loss L. To circumvent the hurdle of nonconvexity, our proof
in SI Appendix presents several elements.

In passing, we leave the experimental confirmation of neural
collapse with these loss functions for future work.

Layer-Peeled Model for Predicting Minority Collapse
Deep-learning models are often trained on datasets where there
is a disproportionate ratio of observations in each class (50–52).
For example, in the Places2 challenge dataset (53), the number
of images in its majority scene categories is about eight times
that in its minority classes. Another example is the Ontonotes
dataset for part-of-speech tagging (54), where the number of
words in its majority classes can be more than 100 times that in
its minority classes. While empirically, the imbalance in class sizes
often leads to inferior model performance of deep learning (see,
e.g., ref. (11)), there remains a lack of a solid theoretical footing
for understanding its effect, perhaps due to the complex details
of deep-learning training.

In this section, we use the Layer-Peeled Model to seek a
fine-grained characterization of how class imbalance impacts
neural networks that are trained for a sufficiently long time. In
particular, neural collapse no longer emerges in the presence of
class imbalance (see numerical evidence in SI Appendix, Fig. S2).
Instead, our analysis predicts a phenomenon we term Minority
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Collapse, which fundamentally limits the performance of deep
learning, especially on the minority classes, both theoretically and
empirically. All omitted proofs are relegated to SI Appendix.

Technique: Convex Relaxation. When it comes to imbalanced
datasets, the Layer-Peeled Model no longer admits a simple
expression for its minimizers as in the balanced case, due to the
lack of symmetry between classes. This fact results in, among
others, an added burden on numerically computing the solutions
of the Layer-Peeled Model.

To overcome this difficulty, we introduce a convex opti-
mization program as a relaxation of the nonconvex Layer-
Peeled Model (Eq. 7), relying on the well-known result
for relaxing a quadratically constrained quadratic program
as a semidefinite program (see, e.g., ref. (55)). To begin
with, defining hk as the feature mean of the k-th class (i.e.,
hk := 1

nk

∑nk
i=1 hk ,i ), we introduce a decision variable X :=[

h1,h2, . . . ,hK ,W�]� [
h1,h2, . . . ,hK ,W�] ∈ R

2K×2K . By
definition, X is positive semidefinite and satisfies

1

K

K∑
k=1

X (k , k) =
1

K

K∑
k=1

‖hk‖2
a

≤ 1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk ,i‖2 ≤ EH ,

and
1

K

2K∑
k=K+1

X (k , k) =
1

K

K∑
k=1

‖w k‖2 ≤ EW ,

where
a

≤ follows from the Cauchy–Schwarz inequality. Thus, we
consider the following semidefinite programming problem:#

min
X∈R2K×2K

K∑
k=1

nk

N
L(z k , yk )

s.t. X 
 0,

1

K

K∑
k=1

X (k , k)≤ EH ,
1

K

2K∑
k=K+1

X (k , k)≤ EW ,

for all1≤ k ≤K ,

z k = [X (k ,K + 1),X (k ,K + 2), . . . ,X (k , 2K ) ]� .
[15]

Lemma 1 below relates the solutions of Eq. 15 to that of Eq. 7.
Lemma 1. Assume p ≥ 2K and the loss function L is convex in its
first argument. Let X � be a minimizer of the convex program [15].
Define (H �,W �) as[

h�
1,h

�
2, . . . ,h

�
K , (W �)�

]
=P(X �)1/2,

h�
k ,i = h�

k , for all1≤ i ≤ n, 1≤ k ≤K , [16]

where (X �)1/2 denotes the positive square root of X � and P ∈
R

p×2K is any partial orthogonal matrix such that P�P = I 2K .
Then, (H �,W �) is a minimizer of Eq. 7. Moreover, if all X � ’s
satisfy 1

K

∑K
k=1 X

�(k , k) = EH , then all the solutions of Eq. 7. are
in the form of Eq. 16.

This lemma in effect says that the relaxation does not lead to
any loss of information when we study the Layer-Peeled Model
through a convex program, thereby offering a computationally
efficient tool for gaining insights into the terminal phase of train-
ing deep neural networks on imbalanced datasets. An appealing
feature is that the size of the program [15] is independent of
the number of training examples. Besides, this lemma predicts

#Although Eq. 15 involves a semidefinite constraint, it is not a semidefinite program in
the strict sense because a semidefinite program uses a linear objective function.

that even in the imbalanced case, the last-layer features collapse
to their class means under mild conditions. Therefore, Property
(NC1) is satisfied (see more discussion about the condition in
SI Appendix).

The assumption of the convexity of L in the first argument
is satisfied by a large class of loss functions. The condition
that the first K-diagonal elements of any X � make the asso-
ciated constraint saturated is also not restrictive. For example,
we prove in SI Appendix that this condition is satisfied for the
cross-entropy loss. We also remark that Eq. 15 is not the unique
convex relaxation. An alternative is to relax Eq. 7 via a nuclear
norm-constrained convex program (56), (57) (see more details in
SI Appendix).

Minority Collapse. With the technique of convex relaxation in
place, now we numerically solve the Layer-Peeled Model on im-
balanced datasets, with the goal of identifying possible nontrivial
patterns. As a worthwhile starting point, we consider a dataset
that has KA majority classes, each containing nA training exam-
ples, and KB minority classes, each containing nB training ex-
amples. That is, assume n1 = n2 = · · ·= nKA = nA and nKA+1 =
nKA+2 = · · ·= nK = nB . For convenience, call R := nA/nB > 1
the imbalance ratio. Note that the case R = 1 reduces to the
balanced setting.

An important question is to understand how the KB last-
layer minority classifiers behave as the imbalance ratio R in-
creases, as this is directly related to the model performance
on the minority classes. To address this question, we show that
the average cosine of the angles between any pair of the KB

minority classifiers in Fig. 3 by solving the simple convex program
[15]. This figure reveals a two-phase behavior of the minority
classifiers w�

KA+1,w
�
KA+2, . . . ,w

�
K as R increases:

1. When R < R0 for some R0 > 0, the average between-
minority-class angle becomes smaller as R increases.

2. Once R ≥ R0, the average between-minority-class angle be-
comes zero, and, in addition, the minority classifiers have
about the same length. This implies that all the minority
classifiers collapse to a single vector.

Above, the phase transition pointR0 depends on the class sizes
KA,KB and the thresholds EH ,EW . This value becomes smaller
when EW ,EH , or the number of minority classes KB is smaller
while fixing the other parameters (see more numerical examples
in SI Appendix, Fig. S2).

We refer to the phenomenon that appears in the second phase
as Minority Collapse. While it can be expected that the minority
classifiers become closer to each other as the level of imbalance
increases, surprisingly, these classifiers become completely indis-
tinguishable once R hits a finite value. Once Minority Collapse
takes place, the neural network would predict equal probabilities
for all the minority classes, regardless of the input. As such, its
predictive ability is by no means better than a coin toss when
conditioned on the minority classes. This situation would only
get worse in the presence of adversarial perturbations. This
phenomenon is especially detrimental when the minority classes
are more frequent in the application domains than in the training
data. Even outside the regime of Minority Collapse, the classifi-
cation might still be unreliable if the imbalance ratio is large, as
the softmax predictions for the minority classes can be close to
each other.

To put the observations in Fig. 3 on a firm footing, we prove in
the theorem below that Minority Collapse indeed emerges in the
Layer-Peeled Model as R tends to infinity.
Theorem 5. Assume p ≥K and nA/nB →∞, and fix KA and KB .
Let (H �,W �) be any global minimizer of the Layer-Peeled Model
(Eq. 7) with the cross-entropy loss. As R ≡ nA/nB →∞, we have

limw�
k −w�

k′ = 0p , for allKA < k < k ′ ≤K .
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Fig. 3. The average cosine of the angles between any pair of the minority classifier solved from the Layer-Peeled Model. The average cosine reaches 1 once
R is above some threshold. The total number of classes KA + KB is fixed to 10. The gray dash-dotted line indicates the value of − 1

K−1 , which is given by Eq.
10. The between-majority-class angles can still be large, even when Minority Collapse emerges. Notably, our simulation suggests that the minority classifiers
exhibit an equiangular frame, and so do the majority classifiers. (A) EW = 1, EH = 5. (B) EW = 1, EH = 10.

To intuitively see why Minority Collapse occurs, first note that
the majority classes become the predominant part of the risk
function as the level of imbalance increases. The minimization of
the objective, therefore, pays too much emphasis on the major-
ity classifiers, encouraging the between-majority-class angles to
grow and meanwhile shrinking the between-minority-class angles
to zero. As an aside, an interesting question for future work
is to prove that w�

k and w�
k′ are exactly equal for sufficiently

large R.

Experiments. At the moment, Minority Collapse is merely a pre-
diction of the Layer-Peeled Model. An immediate question thus
is: Does this phenomenon really occur in real-world neural net-
works? At first glance, it does not necessarily have to be the case
since the Layer-Peeled Model is a dramatic simplification of deep
neural networks.

To address this question, we resort to computational ex-
periments.## Explicitly, we consider training two network
architectures, VGG and ResNet (58), on the FashionMNIST (59)
and CIFAR10 datasets and, in particular, replace the dropout
layers in VGG with batch normalization (60). As both datasets
have 10 classes, we use three combinations of (KA,KB ) =
(3, 7), (5, 5), (7, 3) to split the data into majority classes and
minority classes. In the case of FashionMNIST (CIFAR10),
we let the KA majority classes each contain all the nA = 6, 000
(nA = 5, 000) training examples from the corresponding class
of FashionMNIST (CIFAR10), and the KB minority classes
each have nB = 6, 000/R (nB = 5, 000/R) examples randomly
sampled from the corresponding class. The rest of the experiment
setup is basically the same as ref. (4). In detail, we use the cross-
entropy loss and stochastic gradient descent with momentum 0.9
and weight decay λ= 5× 10−4. The networks are trained for 350
epochs with a batch size of 128. The initial learning is annealed
by a factor of 10 at 1/3 and 2/3 of the 350 epochs. The only
difference from ref. (4) is that we simply set the learning rate to
0.1 instead of sweeping over 25 learning rates between 0.0001
and 0.25. This is because the test performance of our trained
models is already comparable with their best reported test
accuracy. Detailed training and test performance are displayed
in SI Appendix, Tables S1 and S2.

##Our code is publicly available at https://github.com/HornHehhf/LPM.

The results of the experiments above are displayed in Fig. 4.
This figure clearly indicates that the angles between the minority
classifiers collapse to zero as soon as R is large enough. More-
over, the numerical examination in Table 1 shows that the norm
of the classifier is constant across the minority classes. Taken
together, these two pieces clearly give evidence for the emer-
gence of Minority Collapse in these neural networks, thereby fur-
ther demonstrating the effectiveness of our Layer-Peeled Model.
Besides, Fig. 4 also shows that the issue of Minority Collapse
is compounded when there are more majority classes, which is
consistent with Fig. 3.

Next, in order to get a handle on how Minority Collapse
impacts the test accuracy, we plot the results of another numer-
ical study in Fig. 5. The setting is the same as Fig. 4, except that
now we randomly sample six or five examples per class for the
minority classes, depending on whether the dataset is FashionM-
NIST or CIFAR10. The results show that the performance of the
trained model deteriorates in the test data when the imbalance
ratio R = 1, 000, when Minority Collapse has occurred or is
about to occur. This is by no means intuitive a priori, as the test
performance is only restricted to the minority classes and a large
value of R only leads to more training data in the majority classes
without affecting the minority classes at all.

It is worthwhile to mention that the emergence of Minority
Collapse would prevent the model from achieving zero training
error. This is because its prediction is uniform over the minority
classes, and, therefore, the “argmax” rule does not give the
correct label for a training example from a minority class. As
such, the occurrence of Minority Collapse is a departure from the
terminal phase of deep-learning training. While this fact seems
to contradict conventional wisdom on the approximation power
of deep learning, it is important to note that the constraints
in the Layer-Peeled Model or, equivalently, weight decay in
neural networks limits the expressive power of deep-learning
models. Besides, it is equally important to recognize that the
training error, which mostly occurs in the minority classes, is
actually very small when Minority Collapse emerges since the
minority examples only account for a small portion of the entire
training set. In this spirit, the aforementioned departure is not as
significant as it appears at first glance since the training error is
generally, if not always, not exactly zero (see, e.g., ref. (4)). From
an optimization point of view, a careful examination indicates
that Minority Collapse can be attributed to the two constraints
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Fig. 4. Occurrence of Minority Collapse in deep neural networks. Each curve denotes the average between-minority-class cosine. We fix KA + KB = 10. In
particular, B shares the same setting with Fig. 2in Section 1, where the LPM-based predictions are given by (EW , EH) such that the two constraints in the
Layer-Peeled Model become active for the weights of the trained networks. For ResNet 18, Minority Collapse also occurs as long as R is sufficiently large.
Specifically, the average cosine would hit 1 for KA = 7 when R = 5, 000 on CIFAR10, and when R = 3, 000 on FashionMNIST. (A) VGG11 on FashionMNIST. (B)
VGG13 on CIFAR10. (C) ResNet18 on FashionMNIST. (D) ResNet18 on CIFAR10.

in the Layer-Peeled Model or the �2 regularization in Eq. 1. For
example, Fig. 2 shows that Minority Collapse occurs earlier with
a larger value of λ. However, this issue does not disappear by
simply setting a small penalty coefficient λ, as the imbalance ratio
can be arbitrarily large.

How to Mitigate Minority Collapse?
In this section, we further exploit the use of the Layer-Peeled
Model in an attempt to lessen the detrimental effect of Minority

Collapse. Instead of aiming to develop a full set of methodologies
to overcome this issue, which is beyond the scope of the paper,
our aim is to evaluate some simple techniques used for imbal-
anced datasets.

Among many approaches to handling class imbalance in deep
learning (see the review in ref. (11)), perhaps the most pop-
ular one is to oversample training examples from the minor-
ity classes (61–64). In its simplest form, this sampling scheme
retains all majority training examples while duplicating each

Table 1. Variability of the lengths of the minority classifiers when R =∞
Dataset FashionMNIST CIFAR10

Network VGG11 ResNet18 VGG13 ResNet18
architecture

No. of KA = 3 KA = 5 KA = 7 KA = 3 KA = 5 KA = 7 KA = 3 KA = 5 KA = 7 KA = 3 KA = 5 KA = 7
majority
classes

Norm 2.7 × 10−5 4.4 × 10−8 6.0 × 10−8 1.4 × 10−5 5.0−8 6.3 × 10−8 1.4 × 10−4 9.0 × 10−7 5.2 × 10−8 5.4 × 10−5 3.5 × 10−7 5.4 × 10−8

variation

Each number in the row of “norm variation” is Std(‖w�
B‖)/Avg(‖w�

B‖), where Std(‖w�
B‖) denotes the SD of the lengths of the KB classifiers and the

denominator denotes the average. The results indicate that the classifiers of the minority classes have almost the same length.
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Fig. 5. Comparison of the test accuracy on the minority classes between R = 1 and R = 1, 000. We fix KA + KB = 10 and use nB = 6 (nB = 5) training
examples from each minority class and nA = 6R (nA = 5R) training examples from each majority class in FashionMNIST (CIFAR10). Note that when R = 1, 000,
the test accuracy on the minority classes can be lower than 10% because the trained neural networks misclassify many examples in the minority classes as
some majority classes. (A) VGG11 on FashionMNIST. (B) VGG13 on CIFAR10. (C) ResNet18 on FashionMNIST. (D) ResNet18 on CIFAR10.

training example from the minority classes for wr times, where
the oversampling rate wr is a positive integer. Oversampling in
effect transforms the original problem to the minimization of
an optimization problem by replacing the risk term in Eq. 1
with

1

nAKA + wrnBKB

[
KA∑
k=1

nA∑
i=1

L(f (x k ,i ;W full), yk )

+ wr

K∑
k=KA+1

nB∑
i=1

L(f (x k ,i ;W full), yk )

]
, [17]

while keeping the penalty term λ
2
‖W full‖2. Note that oversam-

pling is closely related to weight adjusting (see more discussion
in SI Appendix).

A close look at Eq. 17 suggests that the neural network ob-
tained by minimizing this program might behave as if it were
trained on a (larger) dataset with nA and wrnB examples in each
majority class and minority class, respectively. To formalize this
intuition, as earlier, we start by considering the Layer-Peeled

Model in the case of oversampling:

min
H ,W

1

N ′

⎡
⎣KA∑
k=1

nA∑
i=1

L(Whk ,i , yk ) + wr

K∑
k=KA+1

nB∑
i=1

L(Whk ,i , yk )

⎤
⎦

s.t.
1

K

K∑
k=1

‖w k‖2 ≤ EW ,

1

K

KA∑
k=1

1

nA

nA∑
i=1

‖hk ,i‖2 +
1

K

K∑
k=KA+1

1

nB

nB∑
i=1

‖hk ,i‖2 ≤ EH ,

[18]

where N ′ := nAKA + wrnBKB .
The following result confirms our intuition that oversampling

indeed boosts the size of the minority classes for the Layer-Peeled
Model.
Proposition 1. Assume p ≥ 2K and the loss function L is con-
vex in the first argument. Let X � be any minimizer of the con-
vex program [15] with n1 = n2 = · · ·= nKA = nA and nKA+1 =
nKA+2 = · · ·= nK = wrnB . Define (H �,W �) as
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[
h�

1,h
�
2, . . . ,h

�
K , (W �)�

]
=P(X �)1/2,

h�
k ,i = h�

k , for all1≤ i ≤ nA, 1≤ k ≤KA,

h�
k ,i = h�

k , for all1≤ i ≤ nB ,KA < k ≤K , [19]

where P ∈ R
p×2K is any partial orthogonal matrix such that

P�P = I 2K . Then, (H �,W �) is a global minimizer of the
oversampling-adjusted Layer-Peeled Model (Eq. 18). Moreover,
if all X � ’s satisfy 1

K

∑K
k=1 X

�(k , k) = EH , then all the solutions
of Eq. 18 are in the form of Eq. 19.

Together with Lemma 1, Proposition 1 shows that the number
of training examples in each minority class is now in effect wrnB

instead of nB in the Layer-Peeled Model. In the special case
wr = nA/nB ≡ R, the results show that all the angles are equal
between any given pair of the last-layer classifiers, no matter if
they fall in the majority or minority classes.

We turn to Fig. 6 for an illustration of the effects of over-
sampling on real-world deep-learning models, using the same
experimental setup as in Fig. 5. From Fig. 6, we see that the
angles between pairs of the minority classifiers become larger as
the oversampling rate wr increases. Consequently, the issue of
Minority Collapse becomes less detrimental in terms of training
accuracy as wr increases. This again corroborates the predictive
ability of the Layer-Peeled Model.

Next, we refer to Table 2 for effect on the test performance.
The results clearly demonstrate the improvement in test accuracy
using oversampling, with certain choices of the oversampling
rate. The improvement is noticeable on both the minority classes
and all classes.

Behind the results of Table 2, however, it reveals an issue
when addressing Minority Collapse by oversampling. Specifically,
this technique might lead to degradation of test performance
using a very large oversampling rate wr , which, though, can
mitigate Minority Collapse. How can we efficiently select an
oversampling rate for optimal test performance? More broadly,
Minority Collapse does not seem likely to be fully resolved by
sampling-based approaches alone, and the doors are wide open
for future investigation.

Discussion
In this paper, we have developed the Layer-Peeled Model as
a simple, yet effective, modeling strategy toward understanding
well-trained deep neural networks. The derivation of this model
follows a top-down strategy by isolating the last layer from the
remaining layers. Owing to the analytical and numerical tractabil-
ity of the Layer-Peeled Model, we provide some explanation
of a recently observed phenomenon called neural collapse in
deep neural networks trained on balanced datasets (4). Moving
to imbalanced datasets, an analysis of this model suggests that
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Fig. 6. Effect of oversampling when the imbalance ratio is R = 1, 000. Each plot shows the average cosine of the between-minority-class angles. The results
indicate that increasing the oversampling rate would enlarge the between-minority-class angles. (A) VGG11 on FashionMNIST. (B) VGG13 on CIFAR10. (C)
ResNet18 on FashionMNIST. (D) ResNet18 on CIFAR10.
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Table 2. Test accuracy (%) on FashionMNIST when R = 1, 000

Network architecture VGG11 ResNet18

No. of majority classes KA = 3 KA = 5 KA = 7 KA = 3 KA = 5 KA = 7

Original (minority) 15.29 20.30 17.00 30.66 34.26 5.53
Oversampling (minority) 41.13 57.22 30.50 37.86 53.46 8.13
Improvement (minority) 25.84 36.92 13.50 7.20 19.20 2.60
Original (overall) 40.10 57.61 69.09 50.88 64.89 66.13
Oversampling (overall) 58.25 76.17 73.37 55.91 74.56 67.10
Improvement (overall) 18.15 18.56 4.28 5.03 9.67 0.97

For example, “Original (minority)” means that the test accuracy is evaluated only on the minority classes, and oversampling is not used. When oversampling
is used, we report the best test accuracy among four oversampling rates: 1, 10, 100, and 1,000. The best test accuracy is never achieved at wr = 1, 000,
indicating that oversampling with a large wr would impair the test performance.

the last-layer classifiers corresponding to the minority classes
would collapse to a single vector once the imbalance level is
above a certain threshold. This phenomenon, whic h we refer to
as Minority Collapse, occurs consistently in our computational
experiments.

The efficacy of the Layer-Peeled Model in analyzing well-
trained deep-learning models implies that the ansatz Eq. 6—a
crucial step in the derivation of this model—is at least a useful
approximation. Moreover, this ansatz can be further justified
by the following result in an indirect manner, which, together
with Theorem 1, shows that the �2 norm suggested by the ansatz
happens to be the only choice among all the �q norms that
is consistent with empirical observations. Its proof is given in
SI Appendix.
Proposition 2. AssumeK ≥ 3 and p ≥K .### For any q ∈ (0, 2) ∪
(2,∞), consider the optimization problem

min
W ,H

1

N

K∑
k=1

n∑
i=1

L(Whk ,i , yk )

s.t.
1

K

K∑
k=1

‖w k‖2 ≤ EW ,

1

K

K∑
k=1

1

n

n∑
i=1

‖hk ,i‖qq ≤ EH , [20]

where L is the cross-entropy loss. Then, any global minimizer of this
program does not satisfy Eq. 9 for any positive numbers C and C ′.
That is, neural collapse does not emerge in this model.

While the Layer-Peeled Model has demonstrated its no-
ticeable effectiveness, it requires future investigation for
consolidation and extension. First, an analysis of the gap between
the Layer-Peeled Model and well-trained deep-learning models
would be a welcome advance. For example, how does the
gap depend on the neural network architectures? How to
take into account the sparsity of the last-layer features when
using the ReLU activation function? From a different angle, a
possible extension is to retain multiple layers following the top-
down viewpoint. Explicitly, letting 1≤m < L be the number
of the top layers we wish to retain in the model, we can
represent the prediction of the neural network as f (x ,W full) =
f (h(x ;W 1:(L−m)),W (L−m+1):L) by letting W 1:(L−m) and

###
See discussion in the case K = 2 in SI Appendix.

W (L−m+1):L be the first L−m layers and the last m layers,
respectively. Consider the m-Layer-Peeled Model:

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(f (hk ,i ,W (L−m+1):L), yk )

s.t.
1

K
‖W (L−m+1):L‖2 ≤ EW ,

1

K

K∑
k=1

1

nk

nk∑
i=1

‖hk ,i‖2 ≤ EH .

The two constraints might be modified to take into account the
network architectures. An immediate question is whether this
model with m = 2 is capable of capturing new patterns of deep-
learning training.

From a practical standpoint, the Layer-Peeled Model together
with its convex relaxation Eq. 15 offers an analytical and com-
putationally efficient technique to identify and mitigate bias
induced by class imbalance. An interesting question is to extend
Minority Collapse from the case of two-valued class sizes to
general imbalanced datasets. Next, as suggested by our findings
in Section 5, how should we choose loss functions in order to
mitigate Minority Collapse (64)? Last, a possible use case of the
Layer-Peeled Model is to design more efficient sampling schemes
to take into account fairness considerations (65–67).

Broadly speaking, insights can be gained not only from the
Layer-Peeled Model, but also from its modeling strategy. The
details of empirical deep-learning models, though formidable,
can often be simplified by rendering a certain part of the network
modular. When the interest is about the top few layers, for
example, this paper clearly demonstrates the benefits of taking
a top-down strategy for modeling neural networks, especially in
consolidating our understanding of previous results and in dis-
covering new patterns. Owing to its mathematical convenience,
the Layer-Peeled Model shall open the door for future research
extending these benefits.
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